Longevity of cryogenically stored seeds.
نویسندگان
چکیده
Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.
منابع مشابه
Estimation of seed viability constants for tall wheatgrass, cocksfoot, rye, and sheep fescue to inform gene banking decisions. Hamid Reza Eisvand
Stored seeds deteriorate over time and must be regenerated to ensure that the benefits of ex situ conservation are realized. Prediction of seed longevity is based on the seed viability equation. This equation has four constants which are species specific. The aim of this project is the estimation of these constants and prediction of regeneration frequency for Elytrigia elongata, Dactylis glomer...
متن کاملAging in Orthodox Seeds is a Problem
Seed deterioration is loss of seed quality, viability and vigor due to effect of adverse environmental factors. Many of our crops are reproduced through seeds, and throughout the world large quantities are produced, stored and transported. Seed ageing during storage may cause retardation of field establishment, and may eventually result in seedling abnormalities or even failure of emergence. Du...
متن کاملAging in Orthodox Seeds is a Problem
Seed deterioration is loss of seed quality, viability and vigor due to effect of adverse environmental factors. Many of our crops are reproduced through seeds, and throughout the world large quantities are produced, stored and transported. Seed ageing during storage may cause retardation of field establishment, and may eventually result in seedling abnormalities or even failure of emergence. Du...
متن کاملThe Effect of Storage Condition and Duration on the Deterioration of Primed Rice Seeds
Seed priming is a successful practice to improve crop establishment under adverse environment. However, reduced longevity of primed rice (Oryza sativa L.) seeds during storage limited the adoption of this technique. Present study investigated the effect of temperature, relative air humidity (RH) and oxygen on the longevity of primed rice seeds in a range of 60 days storage. In addition, the bio...
متن کاملSeed aging: chromosome stability and extended viability of seeds stored fully imbided.
Increase in moisture content of seeds of Lactuca sativa L. and Fraxinus americana L. in air-dry storage caused a rapid decline in longevity and an increase in the rate of accumulation of chromosome aberrations. Storage of seeds fully imbibed but unable to germinate allowed a high germination capacity to be maintained for long periods, together with a very low incidence of chromosome aberrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cryobiology
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2004